22,758 research outputs found

    Cooperative spin decoherence and population transfer

    Full text link
    An ensemble of multilevel atoms is a good candidate for a quantum information storage device. The information is encrypted in the collective ground state atomic coherence, which, in the absence of external excitation, is decoupled from the vacuum and therefore decoherence free. However, in the process of manipulation of atoms with light pulses (writing, reading), one inadvertently introduces a coupling to the environment, i.e. a source of decoherence. The dissipation process is often treated as an independent process for each atom in the ensemble, an approach which fails at large atomic optical depths where cooperative effects must be taken into account. In this paper, the cooperative behavior of spin decoherence and population transfer for a system of two, driven multilevel-atoms is studied. Not surprisingly, an enhancement in the decoherence rate is found, when the atoms are separated by a distance that is small compared to an optical wavelength; however, it is found that this rate increases even further for somewhat larger separations for atoms aligned along the direction of the driving field's propagation vector. A treatment of the cooperative modification of optical pumping rates and an effect of polarization swapping between atoms is also discussed, lending additional insight into the origin of the collective decay

    The Milky Way halo as a QSO absorption-line system. New results from an HST/STIS absorption-line catalogue of Galactic high-velocity clouds

    Full text link
    We use archival UV absorption-line data from HST/STIS to statistically analyse the absorption characteristics of the high-velocity clouds (HVCs) in the Galactic halo towards more than 40 extragalactic background sources. We determine absorption covering fractions of low- and intermediate ions (OI, CII, SiIII, MgII, FeII, SiIII, CIV, and SiIV) in the range fc = 0.20 - 0.70. For detailed analysis we concentrate on SiII absorption components in HVCs, for which we investigate the distribution of column densities, b-values, and radial velocities. Combining information for SiII and MgII, and using a geometrical HVC model we investigate the contribution of HVCs to the absorption cross section of strong MgII absorbers in the local Universe. We estimate that the Galactic HVCs would contribute on average ~52 % to the total strong MgII cross section of the Milky Way, if our Galaxy were to be observed from an exterior vantage point. We further estimate that the mean projected covering fraction of strong MgII absorption in the Milky Way halo and disc from an exterior vantage point is fc(sMgII) = 0.31 for a halo radius of R = 61 kpc. These numbers, together with the observed number density of strong MgII absorbers at low redshift, indicate that the contribution of infalling gas clouds (i.e., HVC analogues) in the halos of Milky Way-type galaxies to the cross section of strong MgII absorbers is <34 %. These findings are in line with the idea that outflowing gas (e.g., produced by galactic winds) in the halos of more actively star-forming galaxies dominate the absorption-cross section of strong MgII absorbers in the local Universe

    Analytical ground state for the three-band Hubbard model

    Full text link
    For the calculation of charge excitations as those observed in, e.g., photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct description of ground-state charge properties is essential. In strongly correlated systems like the undoped cuprates this is a highly non-trivial problem. In this paper we derive a non-perturbative analytical approximation for the ground state of the three-band Hubbard model on an infinite, half filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo calculations it is shown that the resulting expressions correctly describe the charge properties of the ground state. Relations to other approaches are discussed. The analytical ground state preserves size consistency and can be generalized for other geometries, while still being both easy to interpret and to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.

    A compact 90 kilowatt electric heat source for heating inert gases to 1700 F

    Get PDF
    Design and fabrication of compact electric heat source for heating inert gase

    Phase-coherent transport in InN nanowires of various sizes

    Get PDF
    We investigate phase-coherent transport in InN nanowires of various diameters and lengths. The nanowires were grown by means of plasma-assisted molecular beam epitaxy. Information on the phase-coherent transport is gained by analyzing the characteristic fluctuation pattern in the magneto-conductance. For a magnetic field oriented parallel to the wire axis we found that the correlation field mainly depends on the wire cross section, while the fluctuation amplitude is governed by the wire length. In contrast, if the magnetic field is oriented perpendicularly, for wires longer than approximately 200 nm the correlation field is limited by the phase coherence length. Further insight into the orientation dependence of the correlation field is gained by measuring the conductance fluctuations at various tilt angles of the magnetic field.Comment: 5 pages, 5 figure

    Phase--coherence Effects in Antidot Lattices: A Semiclassical Approach to Bulk Conductivity

    Full text link
    We derive semiclassical expressions for the Kubo conductivity tensor. Within our approach the oscillatory parts of the diagonal and Hall conductivity are given as sums over contributions from classical periodic orbits in close relation to Gutzwiller's trace formula for the density of states. Taking into account the effects of weak disorder and temperature we reproduce recently observed anomalous phase coherence oscillations in the conductivity of large antidot arrays.Comment: 11 pages, 2 figures available under request, RevTe

    Spatial Differences of Land Use Change within Oklahoma's Wheat Belt

    Get PDF
    Farm Service Agency acreage data for the nine Oklahoma Agricultural Statistics Service districts is analyzed to determine the degree of price response in wheat acreage allocation decisions. Some critics have stated that land use after Freedom to Farm would change little, however these findings show acreage shifted greatly after the policy throughout the state.Land Economics/Use,

    Experimental vs. Numerical Eigenvalues of a Bunimovich Stadium Billiard -- A Comparison

    Full text link
    We compare the statistical properties of eigenvalue sequences for a gamma=1 Bunimovich stadium billiard. The eigenvalues have been obtained by two ways: one set results from a measurement of the eigenfrequencies of a superconducting microwave resonator (real system) and the other set is calculated numerically (ideal system). The influence of the mechanical imperfections of the real system in the analysis of the spectral fluctuations and in the length spectra compared to the exact data of the ideal system are shown. We also discuss the influence of a family of marginally stable orbits, the bouncing ball orbits, in two microwave stadium billiards with different geometrical dimensions.Comment: RevTex, 8 pages, 8 figures (postscript), to be published in Phys. Rev.

    The spin-half Heisenberg antiferromagnet on two Archimedian lattices: From the bounce lattice to the maple-leaf lattice and beyond

    Full text link
    We investigate the ground state of the two-dimensional Heisenberg antiferromagnet on two Archimedean lattices, namely, the maple-leaf and bounce lattices as well as a generalized JJ-JJ' model interpolating between both systems by varying J/JJ'/J from J/J=0J'/J=0 (bounce limit) to J/J=1J'/J=1 (maple-leaf limit) and beyond. We use the coupled cluster method to high orders of approximation and also exact diagonalization of finite-sized lattices to discuss the ground-state magnetic long-range order based on data for the ground-state energy, the magnetic order parameter, the spin-spin correlation functions as well as the pitch angle between neighboring spins. Our results indicate that the "pure" bounce (J/J=0J'/J=0) and maple-leaf (J/J=1J'/J=1) Heisenberg antiferromagnets are magnetically ordered, however, with a sublattice magnetization drastically reduced by frustration and quantum fluctuations. We found that magnetic long-range order is present in a wide parameter range 0J/JJc/J0 \le J'/J \lesssim J'_c/J and that the magnetic order parameter varies only weakly with J/JJ'/J. At Jc1.45JJ'_c \approx 1.45 J a direct first-order transition to a quantum orthogonal-dimer singlet ground state without magnetic long-range order takes place. The orthogonal-dimer state is the exact ground state in this large-JJ' regime, and so our model has similarities to the Shastry-Sutherland model. Finally, we use the exact diagonalization to investigate the magnetization curve. We a find a 1/3 magnetization plateau for J/J1.07J'/J \gtrsim 1.07 and another one at 2/3 of saturation emerging only at large J/J3J'/J \gtrsim 3.Comment: 9 pages, 10 figure

    Anderson Localization in a String of Microwave Cavities

    Full text link
    The field distributions and eigenfrequencies of a microwave resonator which is composed of 20 identical cells have been measured. With external screws the periodicity of the cavity can be perturbed arbitrarily. If the perturbation is increased a transition from extended to localized field distributions is observed. For very large perturbations the field distributions show signatures of Anderson localization, while for smaller perturbations the field distribution is extended or weakly localized. The localization length of a strongly localized field distribution can be varied by adjusting the penetration depth of the screws. Shifts in the frequency spectrum of the resonator provide further evidence for Anderson localization.Comment: 7 pages RevTex, to be published in Phys. Rev.
    corecore